Using G6PD tests to enable the safe use of *P. vivax* malaria with primaquine on the Thai-Myanmar border: A cost-effectiveness analysis

Angela Devine
Mahidol Oxford Tropical Medicine Research Unit
APMEN Vivax Working Group Meeting
17 October 2016

Angela Devine, Minnie Parmiter, Cindy Chu, Germana Bancone, Francois Nosten, Ric Price, Yoel Lubell, Shunmay Yeung
Aim

To evaluate the cost-effectiveness of using a screening strategy (14 day primaquine to those who test G6PD normal and weekly primaquine to those who test abnormal) as compared to:

1. Giving only chloroquine to everyone (Chloroquine strategy)
2. Giving primaquine to everyone without screening (Primaquine strategy)
Decision tree

- Weigh up the costs and disability-adjusted life-years (DALYs) averted for:
 - Recurrences
 - Haemolytic events
- Clinical trial data from North-western border of Thailand with Myanmar:
 - Chloroquine
 - Chloroquine + observed primaquine (0.5 mg/kg/day for 14 days)
- Assumes 100% adherence to primaquine regimen
- 1 year time horizon
Analysed males and females separately

- G6PD prevalence & risk varies
 - Severe deficiency: males & females with <30% G6PD activity
 - Moderate deficiency: females with 30-69% G6PD activity (heterozygotes)

- Primaquine is contraindicated in pregnancy
 - Pregnant women are not prescribed primaquine
 - Pregnancy test given to all women of childbearing age who don’t state that they are pregnant
Assumptions

- G6PD RDTs given at each episode
- Those who test G6PD abnormal will receive 8 weekly doses of primaquine
- Patients with severe deficiency never finish their primaquine course
 - Full cost of observed therapy
 - Recurrences equivalent to receiving chloroquine only
- Females with moderate deficiency will always finish primaquine course
Decisions

- Whether had at least one recurrence
- Whether had a haemolytic event requiring transfusion
- Whether they received that transfusion (mortality rate)
- Whether females were pregnant
- Whether received primaquine after G6PD test (sensitivity and specificity)
Key model parameters

• RDT sensitivity: 0.99 for severe deficiency and 0.44 for moderate deficiency [CareStart G6PD RDT - Bancone 2014]
• Cost of G6PD RDT = US$1.75
• Cost of supervised primaquine therapy = $1.67 per session
• Prevalence of G6PD deficiency: 0.14 in males, 0.05 in females (severe) and 0.16 females (moderate) [SMRU data]
• 2% of *P. vivax* cases are severe [Rahimi 2014]
• *P. vivax* mortality is 0.1% [Rahimi 2014]
Haemolysis Parameters

• Assumes that 11% of individuals with severe G6PD deficiency who receive primaquine will need a blood transfusion (1% for moderate deficiency) [Pamba 2012]

• 10% mortality for those who need a transfusion but do not receive it [assumption]
Chloroquine strategy vs Screening strategy

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Costs (US$)</td>
<td>DALYs</td>
<td>Costs (US$)</td>
<td>DALYs</td>
</tr>
<tr>
<td>Base case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroquine strategy</td>
<td>$38.5</td>
<td>0.13</td>
<td>$38.5</td>
<td>0.14</td>
</tr>
<tr>
<td>Screening strategy</td>
<td>$38.2</td>
<td>0.01</td>
<td>$38.4</td>
<td>0.03</td>
</tr>
<tr>
<td>Incremental difference</td>
<td>$0.3 saved</td>
<td>0.12 averted</td>
<td>$0.1 saved</td>
<td>0.11 averted</td>
</tr>
</tbody>
</table>

One way sensitivity analysis:
- Screening strategy always averted more DALYs
- When *P. vivax* mortality was lowered to 0, the DALYs for screening strategy and chloroquine strategy were nearly equivalent
- Incremental costs were highest when
 - radical cure had a low impact on recurrences
 - costs were increased for supervised therapy, recurrences & G6PD RDT
Probabilistic sensitivity analysis
Primaquine strategy vs Screening strategy

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base case</td>
<td>Costs (US$)</td>
<td>DALYs</td>
</tr>
<tr>
<td>Primaquine strategy</td>
<td>$45.3</td>
<td>0.10</td>
</tr>
<tr>
<td>Screening strategy</td>
<td>$38.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Incremental difference</td>
<td>$7.1 saved</td>
<td>0.09 averted</td>
</tr>
</tbody>
</table>

One way sensitivity analysis:
- Screening strategy always averted more DALYs
- Screening strategy was always cost saving except for high G6PD RDT value ($10)
- Smaller impact on results than when comparing the screening and chloroquine strategies
Probabilistic sensitivity analysis

Males

Females

Probabilistic sensitivity analysis
Cohort analysis

• Males
 • 1 death per 668 treated with the primaquine strategy
 • 1 death per 66,816 treated with the screening strategy

• Females who aren’t pregnant
 • 1 death per 1,599 treated with the primaquine strategy
 • 1 death per 20,199 treated with the screening strategy
Conclusions

• Point of care RDTs for G6PD provide significant health benefits (around 1 month of disability-free life) by reducing recurrences while greatly reducing haemolytic risk in G6PD deficient patients

• Potential for cost savings or moderate cost increases with screening

• Results for other locations will vary due to differences in the epidemiology of *P. vivax* and G6PD deficiency

• Where blood transfusions are not accessible, risks may need to be weighed up more carefully, especially for heterozygous females
Any questions?